Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Vis Exp ; (200)2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37902363

RESUMEN

Spatial navigation is a complex function involving the integration and manipulation of multisensory information. Using different navigation tasks, many promising results have been achieved on the specific functions of various brain regions (e.g., hippocampus, entorhinal cortex, and parahippocampal place area). Recently, it has been suggested that a non-aggregate network process involving multiple interacting brain regions may better characterize the neural basis of this complex function. This paper presents an integrative approach for constructing and analyzing the functionally-specific network for spatial navigation in the human brain. Briefly, this integrative approach consists of three major steps: 1) to identify brain regions important for spatial navigation (nodes definition); 2) to estimate functional connectivity between each pair of these regions and construct the connectivity matrix (network construction); 3) to investigate the topological properties (e.g., modularity and small worldness) of the resulting network (network analysis). The presented approach, from a network perspective, could help us better understand how our brain supports flexible navigation in complex and dynamic environments, and the revealed topological properties of the network can also provide important biomarkers for guiding early identification and diagnosis of Alzheimer's disease in clinical practice.


Asunto(s)
Navegación Espacial , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Mapeo Encefálico/métodos , Hipocampo
2.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2802-2809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285246

RESUMEN

Biclustering algorithms are essential for processing gene expression data. However, to process the dataset, most biclustering algorithms require preprocessing the data matrix into a binary matrix. Regrettably, this type of preprocessing may introduce noise or cause information loss in the binary matrix, which would reduce the biclustering algorithm's ability to effectively obtain the optimal biclusters. In this paper, we propose a new preprocessing method named Mean-Standard Deviation (MSD) to resolve the problem. Additionally, we introduce a new biclustering algorithm called Weight Adjacency Difference Matrix Binary Biclustering (W-AMBB) to effectively process datasets containing overlapping biclusters. The basic idea is to create a weighted adjacency difference matrix by applying weights to a binary matrix that is derived from the data matrix. This allows us to identify genes with significant associations in sample data by efficiently identifying similar genes that respond to specific conditions. Furthermore, the performance of the W-AMBB algorithm was tested on both synthetic and real datasets and compared with other classical biclustering methods. The experiment results demonstrate that the W-AMBB algorithm is significantly more robust than the compared biclustering methods on the synthetic dataset. Additionally, the results of the GO enrichment analysis show that the W-AMBB method possesses biological significance on real datasets.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis por Conglomerados , Expresión Génica
3.
Hum Brain Mapp ; 44(10): 4165-4182, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37195040

RESUMEN

Understanding the evolutionarily conserved feature of functional laterality in the habenula has been attracting attention due to its potential role in human cognition and neuropsychiatric disorders. Deciphering the structure of the human habenula remains to be challenging, which resulted in inconsistent findings for brain disorders. Here, we present a large-scale meta-analysis of the left-right differences in the habenular volume in the human brain to provide a clearer picture of the habenular asymmetry. We searched PubMed, Web of Science, and Google Scholar for articles that reported volume data of the bilateral habenula in the human brain, and assessed the left-right differences. We also assessed the potential effects of several moderating variables including the mean age of the participants, magnetic field strengths of the scanners and different disorders by using meta-regression and subgroup analysis. In total 52 datasets (N = 1427) were identified and showed significant heterogeneity in the left-right differences and the unilateral volume per se. Moderator analyses suggested that such heterogeneity was mainly due to different MRI scanners and segmentation approaches used. While inversed asymmetry patterns were suggested in patients with depression (leftward) and schizophrenia (rightward), no significant disorder-related differences relative to healthy controls were found in either the left-right asymmetry or the unilateral volume. This study provides useful data for future studies of brain imaging and methodological developments related to precision habenula measurements, and also helps to further understand potential roles of the habenula in various disorders.


Asunto(s)
Habénula , Humanos , Habénula/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Lateralidad Funcional
4.
Comput Biol Chem ; 104: 107862, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031647

RESUMEN

Single-cell RNA sequencing technology provides a tremendous opportunity for studying disease mechanisms at the single-cell level. Cell type identification is a key step in the research of disease mechanisms. Many clustering algorithms have been proposed to identify cell types. Most clustering algorithms perform similarity calculation before cell clustering. Because clustering and similarity calculation are independent, a low-rank matrix obtained only by similarity calculation may be unable to fully reveal the patterns in single-cell data. In this study, to capture accurate single-cell clustering information, we propose a novel method based on a low-rank representation model, called KGLRR, that combines the low-rank representation approach with K-means clustering. The cluster centroid is updated as the cell dimension decreases to better from new clusters and improve the quality of clustering information. In addition, the low-rank representation model ignores local geometric information, so the graph regularization constraint is introduced. KGLRR is tested on both simulated and real single-cell datasets to validate the effectiveness of the new method. The experimental results show that KGLRR is more robust and accurate in cell type identification than other advanced algorithms.


Asunto(s)
Algoritmos , Análisis por Conglomerados
5.
BMC Bioinformatics ; 23(1): 381, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123637

RESUMEN

Biclustering algorithm is an effective tool for processing gene expression datasets. There are two kinds of data matrices, binary data and non-binary data, which are processed by biclustering method. A binary matrix is usually converted from pre-processed gene expression data, which can effectively reduce the interference from noise and abnormal data, and is then processed using a biclustering algorithm. However, biclustering algorithms of dealing with binary data have a poor balance between running time and performance. In this paper, we propose a new biclustering algorithm called the Adjacency Difference Matrix Binary Biclustering algorithm (AMBB) for dealing with binary data to address the drawback. The AMBB algorithm constructs the adjacency matrix based on the adjacency difference values, and the submatrix obtained by continuously updating the adjacency difference matrix is called a bicluster. The adjacency matrix allows for clustering of gene that undergo similar reactions under different conditions into clusters, which is important for subsequent genes analysis. Meanwhile, experiments on synthetic and real datasets visually demonstrate that the AMBB algorithm has high practicability.


Asunto(s)
Análisis de Datos , Perfilación de la Expresión Génica , Algoritmos , Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
6.
Neuroimage ; 262: 119534, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35931311

RESUMEN

Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobiological basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by self-reported direction of hand preference, and its variability related to brain structural and functional organization in the UK Biobank (N = 36,024). A multivariate machine learning approach with multi-modalities of brain imaging data was adopted, to reveal how well brain imaging features could predict individual's handedness (i.e., right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance in the prediction showed functional relevance to hand movement and several higher-level cognitive functions including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA polymorphisms to the imaging-derived handedness prediction score showed a significant heritability (h2=7.55%, p <0.001) that was similar to and slightly higher than that for the behavioural measure itself (h2=6.74%, p <0.001). The genetic correlation between the two was high (rg=0.71), suggesting that the imaging-derived score could be used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates of human handedness.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Lateralidad Funcional , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
7.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889243

RESUMEN

Many microRNAs (miRNAs) have been confirmed to be associated with the generation of human diseases. Capturing miRNA-disease associations (M-DAs) provides an effective way to understand the etiology of diseases. Many models for predicting M-DAs have been constructed; nevertheless, there are still several limitations, such as generally considering direct information between miRNAs and diseases, usually ignoring potential knowledge hidden in isolated miRNAs or diseases. To overcome these limitations, in this study a novel method for predicting M-DAs was developed named TLNPMD, highlights of which are the introduction of drug heuristic information and a bipartite network reconstruction strategy. Specifically, three bipartite networks, including drug-miRNA, drug-disease, and miRNA-disease, were reconstructed as weighted ones using such reconstruction strategy. Based on these weighted bipartite networks, as well as three corresponding similarity networks of drugs, miRNAs and diseases, the miRNA-drug-disease three-layer heterogeneous network was constructed. Then, this heterogeneous network was converted into three two-layer heterogeneous networks, for each of which the network path computational model was employed to predict association scores. Finally, both direct and indirect miRNA-disease paths were used to predict M-DAs. Comparative experiments of TLNPMD and other four models were performed and evaluated by five-fold and global leave-one-out cross validations, results of which show that TLNPMD has the highest AUC values among those of compared methods. In addition, case studies of two common diseases were carried out to validate the effectiveness of the TLNPMD. These experiments demonstrate that the TLNPMD may serve as a promising alternative to existing methods for predicting M-DAs.


Asunto(s)
MicroARNs , Algoritmos , Biología Computacional/métodos , Humanos , MicroARNs/genética
8.
IEEE J Biomed Health Inform ; 26(7): 3578-3589, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157604

RESUMEN

Cancer genome data generally consists of multiple views from different sources. These views provide different levels of information about gene activity, as well as more comprehensive cancer information. The low-rank representation (LRR) method, as a powerful subspace clustering method, has been extended and applied in cancer data research. Although the multi-view learning methods based on low rank representation have achieved good results in cancer multi-omics analysis because they fully consider the consistency and complementarity between views, these methods have some shortcomings in mining the potential local geometry of data. In view of this, this paper proposes a new method named Multi-view Random-walk Graph regularization Low-Rank Representation (MRGLRR) to comprehensively analyze multi-view genomics data. This method uses multi-view model to find the common centroid of view. By constructing a joint affinity matrix to learn the low-rank subspace representation of multiple sets of data, the hidden information of each view is fully obtained. In addition, this method introduces random walk graph regularization constraint to obtain more accurate similarity between samples. Different from the traditional graph regularization constraint, after constructing the KNN graph, we use the random walk algorithm to obtain the weight matrix. The random walk algorithm can retain more local geometric information and better learn the topological structure of the data. What's more, a feature gene selection strategy suitable for multi-view model is proposed to find more differentially expressed genes with research value. Experimental results show that our method is better than other representative methods in terms of clustering and feature gene selection for cancer multi-omics data.


Asunto(s)
Algoritmos , Neoplasias , Análisis por Conglomerados , Genómica , Humanos , Neoplasias/genética , Caminata
9.
J Bioinform Comput Biol ; 20(2): 2250002, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191362

RESUMEN

Tensor Robust Principal Component Analysis (TRPCA) has achieved promising results in the analysis of genomics data. However, the TRPCA model under the existing tensor singular value decomposition ([Formula: see text]-SVD) framework insufficiently extracts the potential low-rank structure of the data, resulting in suboptimal restored components. Simultaneously, the tensor nuclear norm (TNN) defined based on [Formula: see text]-SVD uses the same standard to handle various singular values. TNN ignores the difference of singular values, leading to the failure of the main information that needs to be well preserved. To preserve the heterogeneous structure in the low-rank information, we propose a novel TNN and extend it to the TRPCA model. Potential low-rank space may contain important information. We learn the low-rank structural information from the core tensor. The singular value space contains the association information between genes and cancers. The [Formula: see text]-shrinkage generalized threshold function is utilized to preserve the low-rank properties of larger singular values. The optimization problem is solved by the alternating direction method of the multiplier (ADMM) algorithm. Clustering and feature selection experiments are performed on the TCGA data set. The experimental results show that the proposed model is more promising than other state-of-the-art tensor decomposition methods.


Asunto(s)
Algoritmos , Neoplasias , Análisis por Conglomerados , Genómica , Humanos , Neoplasias/genética , Análisis de Componente Principal
10.
Nat Commun ; 13(1): 622, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110527

RESUMEN

In memory, our continuous experiences are broken up into discrete events. Boundaries between events are known to influence the temporal organization of memory. However, how and through which mechanism event boundaries shape temporal order memory (TOM) remains unknown. Across four experiments, we show that event boundaries exert a dual role: improving TOM for items within an event and impairing TOM for items across events. Decreasing event length in a list enhances TOM, but only for items at earlier local event positions, an effect we term the local primacy effect. A computational model, in which items are associated to a temporal context signal that drifts over time but resets at boundaries captures all behavioural results. Our findings provide a unified algorithmic mechanism for understanding how and why event boundaries affect TOM, reconciling a long-standing paradox of why both contextual similarity and dissimilarity promote TOM.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Adolescente , Adulto , Algoritmos , Conducta/fisiología , Encéfalo/fisiología , Femenino , Humanos , Masculino , Modelos Biológicos , Adulto Joven
11.
BMC Bioinformatics ; 22(Suppl 12): 334, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057729

RESUMEN

BACKGROUND: The identification of cancer types is of great significance for early diagnosis and clinical treatment of cancer. Clustering cancer samples is an important means to identify cancer types, which has been paid much attention in the field of bioinformatics. The purpose of cancer clustering is to find expression patterns of different cancer types, so that the samples with similar expression patterns can be gathered into the same type. In order to improve the accuracy and reliability of cancer clustering, many clustering methods begin to focus on the integration analysis of cancer multi-omics data. Obviously, the methods based on multi-omics data have more advantages than those using single omics data. However, the high heterogeneity and noise of cancer multi-omics data pose a great challenge to the multi-omics analysis method. RESULTS: In this study, in order to extract more complementary information from cancer multi-omics data for cancer clustering, we propose a low-rank subspace clustering method called multi-view manifold regularized compact low-rank representation (MmCLRR). In MmCLRR, each omics data are regarded as a view, and it learns a consistent subspace representation by imposing a consistence constraint on the low-rank affinity matrix of each view to balance the agreement between different views. Moreover, the manifold regularization and concept factorization are introduced into our method. Relying on the concept factorization, the dictionary can be updated in the learning, which greatly improves the subspace learning ability of low-rank representation. We adopt linearized alternating direction method with adaptive penalty to solve the optimization problem of MmCLRR method. CONCLUSIONS: Finally, we apply MmCLRR into the clustering of cancer samples based on multi-omics data, and the clustering results show that our method outperforms the existing multi-view methods.


Asunto(s)
Algoritmos , Neoplasias , Análisis por Conglomerados , Biología Computacional , Humanos , Neoplasias/genética , Reproducibilidad de los Resultados
12.
IEEE Trans Cybern ; 52(6): 5079-5087, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33119529

RESUMEN

A growing number of clinical studies have provided substantial evidence of a close relationship between the microbe and the disease. Thus, it is necessary to infer potential microbe-disease associations. But traditional approaches use experiments to validate these associations that often spend a lot of materials and time. Hence, more reliable computational methods are expected to be applied to predict disease-associated microbes. In this article, an innovative mean for predicting microbe-disease associations is proposed, which is based on network consistency projection and label propagation (NCPLP). Given that most existing algorithms use the Gaussian interaction profile (GIP) kernel similarity as the similarity criterion between microbe pairs and disease pairs, in this model, Medical Subject Headings descriptors are considered to calculate disease semantic similarity. In addition, 16S rRNA gene sequences are borrowed for the calculation of microbe functional similarity. In view of the gene-based sequence information, we use two conventional methods (BLAST+ and MEGA7) to assess the similarity between each pair of microbes from different perspectives. Especially, network consistency projection is added to obtain network projection scores from the microbe space and the disease space. Ultimately, label propagation is utilized to reliably predict microbes related to diseases. NCPLP achieves better performance in various evaluation indicators and discovers a greater number of potential associations between microbes and diseases. Also, case studies further confirm the reliable prediction performance of NCPLP. To conclude, our algorithm NCPLP has the ability to discover these underlying microbe-disease associations and can provide help for biological study.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , ARN Ribosómico 16S
13.
Hum Brain Mapp ; 43(1): 244-254, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841457

RESUMEN

The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Neuroimagen/normas , Adolescente , Adulto , Anciano , Grosor de la Corteza Cerebral , Conjuntos de Datos como Asunto , Humanos , Persona de Mediana Edad , Estudios Multicéntricos como Asunto/normas , Sesgo de Publicación , Reproducibilidad de los Resultados , Adulto Joven
14.
IEEE/ACM Trans Comput Biol Bioinform ; 19(2): 1154-1164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33026977

RESUMEN

The rapid development of single-cell RNA sequencing (scRNA-seq)technology reveals the gene expression status and gene structure of individual cells, reflecting the heterogeneity and diversity of cells. The traditional methods of scRNA-seq data analysis treat data as the same subspace, and hide structural information in other subspaces. In this paper, we propose a low-rank subspace ensemble clustering framework (LRSEC)to analyze scRNA-seq data. Assuming that the scRNA-seq data exist in multiple subspaces, the low-rank model is used to find the lowest rank representation of the data in the subspace. It is worth noting that the penalty factor of the low-rank kernel function is uncertain, and different penalty factors correspond to different low-rank structures. Moreover, the single cluster model is difficult to find the cellular structure of all datasets. To strengthen the correlation between model solutions, we construct a new ensemble clustering framework LRSEC by using the low-rank model as the basic learner. The LRSEC framework captures the global structure of data through low-rank subspaces, which has better clustering performance than a single clustering model. We validate the performance of the LRSEC framework on seven small datasets and one large dataset and obtain satisfactory results.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis por Conglomerados , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
15.
Hum Brain Mapp ; 43(1): 23-36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154629

RESUMEN

Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.


Asunto(s)
Neuroimagen , Trastorno Obsesivo Compulsivo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Humanos , Aprendizaje Automático , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/patología
16.
Hum Brain Mapp ; 43(1): 167-181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32420672

RESUMEN

Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Cerebral/anatomía & histología , Trastorno Depresivo Mayor/patología , Sustancia Gris/anatomía & histología , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Obsesivo Compulsivo/patología , Trastorno del Espectro Autista/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
17.
IEEE J Biomed Health Inform ; 26(1): 458-467, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34156956

RESUMEN

The development of single-cell RNA sequencing (scRNA-seq) technology has made it possible to measure gene expression levels at the resolution of a single cell, which further reveals the complex growth processes of cells such as mutation and differentiation. Recognizing cell heterogeneity is one of the most critical tasks in scRNA-seq research. To solve it, we propose a non-negative matrix factorization framework based on multi-subspace cell similarity learning for unsupervised scRNA-seq data analysis (MscNMF). MscNMF includes three parts: data decomposition, similarity learning, and similarity fusion. The three work together to complete the data similarity learning task. MscNMF can learn the gene features and cell features of different subspaces, and the correlation and heterogeneity between cells will be more prominent in multi-subspaces. The redundant information and noise in each low-dimensional feature space are eliminated, and its gene weight information can be further analyzed to calculate the optimal number of subpopulations. The final cell similarity learning will be more satisfactory due to the fusion of cell similarity information in different subspaces. The advantage of MscNMF is that it can calculate the number of cell types and the rank of Non-negative matrix factorization (NMF) reasonably. Experiments on eight real scRNA-seq datasets show that MscNMF can effectively perform clustering tasks and extract useful genetic markers. To verify its clustering performance, the framework is compared with other latest clustering algorithms and satisfactory results are obtained. The code of MscNMF is free available for academic (https://github.com/wangchuanyuan1/project-MscNMF).


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis por Conglomerados , Perfilación de la Expresión Génica , Marcadores Genéticos , Humanos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
18.
Brain Struct Funct ; 227(2): 561-572, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33502621

RESUMEN

Most people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure-function links in the human brain and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex.


Asunto(s)
Sustancia Gris , Percepción del Habla , Adulto , Percepción Auditiva , Encéfalo/diagnóstico por imagen , Pruebas de Audición Dicótica , Lateralidad Funcional , Sustancia Gris/diagnóstico por imagen , Humanos , Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...